
Report: Ski Rental Problem with Machine Learning Predictors

Jerry Huang

April 2020

1 Problem Statement and Introduction

In the ski rental problem, a skier faces the decision between buying skis that cost b and renting them for a
cost of 1 per day. Clearly, if the skiers know in advance that he will ski for more than b days, it is in his best
interest to buy skis at the start, and vice versa. Our research investigates novel algorithms that can leverage
one or more experts in the form of machine learning predictors to optimize the costs of the skier when not
all of the information is available at the start of the problem. The baseline of our algorithm’s performance
is the well-known deterministic algorithm’s performance, which achieves a competitive ratio of 2.

1.1 Online Algorithms

Online algorithms are algorithms that are fed data piece-by-piece as time goes on, contrasting with the
traditional offline algorithms who start with the entire input. The performance of online algorithms are
measured through competitive analysis, where the costs of the algorithm are compared to those of the
optimal offline algorithm. Namely,

CR =
Worst case cost incurred by online algo

Worst case cost incurred by offline algo

1.2 Predictors

Initially, we modeled the predictors as binary classifiers that would report a prediction b that would either
be greater than or less than 1 with a probability p. However, this formulation seemed to assume too many
unknowns as we ran into questions regarding the independence of these predictions. Questions of whether
P (A|B1) and P (A|B2) were truly independent, and how we would combine the probabilities of multiple
predictors motivated us to reformulate our model of these predictors.

In the second iteration of our ML predictors, we modeled our experts as PAC-learnable models, where
PAC stands for “probably approximately correct.” Formally, they are defined as a class C of functions
f : Rd −→ {0, 1}, where C is PAC-learnable if there exists an algorithm A such that for every f ∈ C, probability
distribution D, 0 ≤ ε < 1

2 , and 0 ≤ δ < 1, A outputs a predictor h over a set of random examples drawn from
D with probability at least 1−δ such that the error, error(h, f) < ε. Here error(h, f) = Prx∈D(h(x) 6= f(x)).
Thus 1− ε is the probability of success.

2 Previous Approaches We Tried

Here are previous approaches that we discussed over the semester – some have been abandoned while others
were left as possible options we may come back to.

1

2.1 One Expert Case with Simple Predictors

We considered the case of having 1 expert that outputs a prediction b with the probability of being correct
equal to p. We get the following 2 cases:

if b < 1, rent till b
CR1 = p(1) + (1− p) · 2 = 2− p = 1 + (

√
1− p)2

if b ≥ 1, rent till some time t

CR2 = p(1 + t) + (1− p) 1 + t

min(t, 1)
= 1 + p · t+

1− p
t

such that t ≤ 1 since there is no case where the skier wants to be renting for duration longer than 1.

To minimize CR2, we let t =
√

1−p
p . Substituting, we get that

CR2 = 1 + 2
√
p(1− p) = 1 + t

In summary, if p < 1
2 , then t = 1 or if p ≥ 1

2 , then t =
√

1−p
p . The rationale behind this is that when the

probability is less than 1
2 , the loss gained from using the prediction outweighs the potential gain.

For multiple simple predictors, we had several discussions on how to combine the probabilities given by
multiple discussions. Ideas like “if we have two conflicting predictions with the same probability, we should
throw both out,” and “we should only accept predictions with a probability greater than 1/2,” were discussed.
Furthermore, we realized that these predictors could not be categorized as being truly independent, so a
p2 and (1 − p)2 weighting system for two predictors that both predicted the same season length would be
inaccurate.

Status: This approach was later reformulated to reflect our adoption of the more rigorous PAC-learnable
model for the predictors.

2.2 One Expert Case with PAC Learning Model

Here we revisit the one predictor case. Consider a general binary classification problem with feature space K,
with (x, y) ∈ K for x ∈ Rd and y ∈ {0, 1}. Suppose there is a predictor over the training set fT : Rd −→ {0, 1}
such that Pr(x,y)∼K(fT (x) = y) ≥ p ∀ x, and Pr(x,y)∼K(y = 1) = q. We will define the event y = 1 to be
a ski season lasting beyond b, which we set equal to 1 here, and the event y = 0 to be a ski season lasting
shorter than b.

Bounds on the two cases

Pr(y = 1, fT (x) = 1) = Pr(y = 1) · Pr(fT (x) = 1|y = 1) ≤ q · p

Pr(y = 0, fT (x) = 1) ≥ (1− p) · (1− q)

From which we can obtain:

Pr(y = 1|fT (x) = 1) ≥ p · q
pq + (1− p)(1− q)

= p0 (1)

Pr(y = 0|fT (x) = 0) ≥ p · (1− q)
p(1− q) + (1− p)q

= p1 (2)

Let p0 and p1 equal the RHS of equations (1) and (2) respectively.

Now, to show that we have successfully bounded the competitive ratio, we consider the following cases:

2

Case 1: When fT (x) = 0, CR ≤ p1 + 2 · (1 − p1) = 2 − p1. Intuitively this is a proper upper bound since
increasing p1 decreases the competitive ratio.

Case 2: When fT (x) = 1, the strategy is to buy at some α. By the same analysis of the one expert case as

before, α =
√

1−p0
p0

minimizes the competitive ratio for p0 >
1
2 . When p0 ≥ 1

2 , CR ≤ 1 + 2
√
p0(1− p0).

Case 3: Consider when q = 1
2 , p1 = p0 = p, and the overall competitive ratio becomes

max(1 + 2
√
p(1− p), 2− p) = 1 + 2

√
p(1− p).

Status: When we started deriving scenarios where we had two or three predictors, the conditional probabil-
ities grew increasingly complex and we got stuck trying to obtain tighter bounds, and so we decided to table
this approach.

3 Concrete (Active) Findings

This final section consists of approaches we are currently actively working on.

3.1 One Expert Case

Notation:

y = true value of length of ski season - adversarial to algorithm

ŷ = value of the predictor - either < B or ≥ B
p = probability the predictor will be correct (long run fraction of times correct)

B = cost of skis - will be set as 1 for simplicity

3.2 Lemmas

Lemma 3.2.1
∀ p ∈ [0, 1] β(p), α(p) ≤ 1 (3)

Proof. Consider a situation where β, α > 1 and suppose that the true length of the season, y, is within
[0, 1]. Regardless of when the adversary chooses to end the season, both strategies are clearly optimal as the
buying points are after 1. Suppose that y ≥ 1. Since the optimal cost when y ≥ 1 is 1, the adversary only
seeks to force the algorithm to incur the highest cost. Thus, y ∈

[
max (α(p), β(p)) ,∞

)
.

Furthermore, any y in this range is valid since after max (α(p), β(p)), the algorithm has bought skis and

can no longer incur cost. Therefore, since CR = p ·
(
β(p)+1

1

)
+ (1− p) ·

(
α(p)+1

1

)
, in order to minimize the

competitive ratio β(p) and α(p) should never be greater than 1.

Lemma 3.2.2

∀α, β ≤ 1 and
1

2
≤ p ≤ 1, β ≤ α (4)

Proof by contradiction. Assume instead that α < β,

Case 1: y < α ≤ 1

Competitive ratio is always 1 (i.e. we match the performance of the offline algorithm).

3

Case 2 α < y < β ≤ 1

CR2 = p ·
(
α+ 1

α

)
+ (1− p) · 1

= p ·
(

1 +
1

α

)
+ 1− p

=
p

α
+ 1

In this case, as p increases, the competitive ratio increases as well.

Case 3: β < y ≤ 1

CR3 = p

(
α+ 1

β

)
+ (1− p)

(
β + 1

β

)
=
p

β
(α+ 1) + 1 +

1

β
− p− p

β

=
1

β
(p(α+ 1) + 1− p) + 1− p

=

(
pα+ 1

β

)
+ 1− p

Case 4: y > 1

CR4 = p(β + 1) + (1− p)(α+ 1) ≤ 2

Fix any β, then find optimal choice for α. Since α, β ≥ 0. CR3 is monotone decreasing with respect to p
and CR2 is monotone increasing with respect to p.

Since that the worst-case competitive ratio we obtained (when p was equal to 1/2) was slightly less than
1.81, if this (0, α, β, 1) strategy is going to have a lower ratio, looking at CR2, we must have p/α ≤ 0.81.
This means that α ≥ p/0.81. Plugging this into CR3, we get CR3 ≥ 1.23p2 + 2− p, which is always at least
around 1.8 when p ≥ 0.5.

Note: these values were obtained through numerical simulations.

Additional cases that cover when α ∨ β > 1.

Case 5: 1 < α < β

The relevant competitive ratios are α ≤ y < β and y ≥ β. The former gives competitive ratio p(1 +β) + (1−
p)(1 + α) and the latter gives p(1 + β) + (1− p)(1 + α). This is minimized by setting α = β = 1, resulting
in a competitive ratio of 2.

Case 6: 0 < α < 1 < β

The three intervals are [α, 1), [1, β), [β,∞). The respective competitive ratios are

CR1 = p

(
1 +

1

α

)
+ (1− p)

CR2 = pβ + (1− p)(1 + α)

CR3 = p(1 + β) + (1− p)(1 + α).

4

Notice that CR3 ≥ CR2, so we can ignore CR2. The algorithm sets β = 1. Solving CR1 = CR3 for α (and
taking the positive solution) yields

α =
p−

√
−p(3p− 4)

2(p− 1)
.

Plugging this into CR1 (or CR3) yields an increasing function in p passing through the points (0.5,≈ 1.81)
and (1, 2). In fact, it looks like the same graph of the best competitive ratio we got, flipped about the p = 0.5
line. For reference, that ratio was

1

2

(
3− p+

√
(2− 3p)p+ 1

)
.

Lemma 3.2.3
∀ p ∈ [0, 1] α(p) = 1 (5)

This lemma is proved in the Section 3.3 when we consider Regions I, II, and III, which together bound α to
a value of 1.

3.3 Deterministic Single Expert

In a deterministic setting the algorithm only has two strategies depending on the value of the prediction.
These strategies are restricted to when the algorithm should buy skis, specifically the algorithm will buy at

α(p) if ŷ < 1

β(p) if ŷ ≥ 1

where α corresponds to the rent strategy and β corresponds to the buy strategy.

Thus, the adversary has three regions that it can choose from.

1. Region 1: Between 0 and β(p)

2. Region 2: Between β(p) and α(p)

3. Region 3: Between α(p) and 1

Visually, the regions look like

0 —— β(p) —— α(p) —— 1

And so, the goal of the adversary is to maximize the competitive ratio across these regions and our algorithm’s
goal is to minimize this maximum.

Now, we calculate the competitive ratios in each of region. Here we assume that α = 1 and that β = β(p).

Region 1 (0 < y < β): It is clear that the adversary does not gain by setting y to any value in region 1.
Logically, if we plan to rent until some value β(p) and we end up stop skiing before then, we have achieved
a competitive ratio of 1.

Region 2 (β ≤ y < α = 1):

CR2 =
py + (1− p)(1 + β)

y

Let y = β to maximize this expression

=
pβ + (1− p)(1 + β)

β
= 1 +

1− p
β

Region 3 (y ≥ 1):

CR3 =
p(1 + β) + (1− p)(1 + β)

1
= 2 + βp− p

5

To find the maximum of CR2 and CR3, we can set them equal to one another given one function is mono-
tonically increasing and the other is monotonically decreasing. We can verify this to be true with a simple
check. For CR2, as β increases from 0 to 1 we see that CR2 decreases, and for CR3, as β increases, CR3

increases.

Solve CR2 = CR3:

CR2 = CR3

1 +
1− p
β

= 2 + βp− p

1− p
β

= 1− p+ pβ

β =

√
−3p2 + 2p+ 1 + p− 1

2p

Note: when p = 1, β = 0. When p = 1/2, β ≈ 0.618.

Plugging into CR2:

CR2 =
1

2

(
3− p+

√
(2− 3p)p+ 1

)
.

When p = 1/2, CR2 ≈ 1.81.

The additional following cases cover the ranges where α is not equal to 1.

Region I: 0 < β < α < 1

The three relevant competitive ratios are the following:

CR1 = p+ (1− p)
(

1 +
1

β

)
CR2 = p

(
1 +

1

α

)
+ (1− p)1 + β

α

CR3 = p(1 + β) + (1− p)(1 + α).

Notice CR2 ≥ CR3, so we can ignore CR3. (For any values of α, β, we can view them as linear functions in
p on [0.5, 1]. Throughout this interval, CR2 ≥ CR3.) To minimize the maximum, the algorithm sets α = 1.

Region II: 0 < β < 1 < α

The three relevant competitive ratios are the following:

CR1 = p+ (1− p)
(

1 +
1

β

)
CR2 = p(1 + β) + (1− p)α
CR3 = p(1 + β) + (1− p)(1 + α).

To minimize the maximum, the algorithm sets α = 1.

Region III: 1 < β < α

The three relevant competitive ratios are the following:

CR1 = β

CR2 = p(1 + β) + (1− p)α
CR3 = p(1 + β) + (1− p)(1 + α).

To minimize the maximum, the algorithm sets α = β = 1.

6

3.4 Randomized Single Expert

For the randomized case, the algorithm follows the same α and β conventions defined in the deterministic
algorithm: if the prediction says rent, then we pick a threshold determined by αp(x); otherwise, we follow
βp(x). For simplicity, we assume that they are both supported on [0, 1].

Intuitively, if p = 1/2, then these distributions should both be 1
e−1e

x (i.e., the no-prediction algorithm), and
if p = 1, then βp(x) should place a lot of mass at 0, and αp(x) should place a lot of mass at 1.

The competitive ratios are:

CR1 = max
y∈[0,1]

[
p

(
1

y

∫ y

0

(x+ 1)αp(x)dx+

∫ 1

y

αp(x)dx

)
+ (1− p)

(
1

y

∫ y

0

(x+ 1)βp(x)dx+

∫ 1

y

βp(x)dx

)]
CR2 = p

(∫ 1

0

(x+ 1)βp(x)dx

)
+ (1− p)

(∫ 1

0

(x+ 1)αp(x)dx

)
= p(1 + µ(βp)) + (1− p)(1 + µ(αp))

= 1 + p · µ(βp) + (1− p)µ(αp),

where µ(αp) and µ(βp) denote the expectation of αp(x) and βp(x), respectively.

Let’s consider the case where p = 1 − ε for some small value of ε. If we set αp(x) to be a point mass at 1,
then

CR1 = 1− ε+ εmax
y

(
1

y

∫ y

0

(x+ 1)βp(x)dx+

∫ 1

y

βp(x)dx

)
≤ 1 + εmax

y

∫ y

0

x+ 1

y
βp(x)dx

≤ 1 + 2εmax
y

∫ y

0

βp(x)

y
dx

CR2 = (1− ε)
(∫ 1

0

(x+ 1)βp(x)dx

)
+ 2ε

= 1 + ε+ (1− ε)µ(βp(x))

≤ 1 + ε+ µ(βp(x)).

Intuitively, to minimize CR2, the mean of β should be low. However, if it is too low, then the adversary can
choose a small y such that [0, y] contains a lot of mass, so CR1 is large. To balance these two quantities,
consider setting βp(x) to be a point mass at

√
ε. In this case, we have

CR1 ≤ 1 + 2ε · 1√
ε

= 1 + 2
√
ε

CR2 ≤ 1 + ε+
√
ε ≤ 1 + 2

√
ε,

so our competitive ratio is at most 1 + 2
√
ε.

To see that this is optimal, suppose we aim for a competitive ratio less than 1+ε+
√
ε/8. Then µ = µ(βp(x))

must be less than
√
ε

8(1−ε) <
√
ε/4. By Markov’s inequality, the interval [0, 2µ] contains at least half of the

total mass. The adversary can pick y = 2µ <
√
ε/2 to achieve

CR1 ≥ 1− ε+ εmax
y

∫ y

0

βp(x)

y
dx

≥ 1− ε+

√
ε

4
,

which for small enough ε, is greater than 1 + ε+
√
ε/8.

7

4 Acknowledgments and References

Acknowledgements

I thank Dr. Panigrahi for his guidance through my first semester of research in the field of computer
algorithms, PhD candidate Kevin Sun for leading discussions and spearheading the research project, and
fellow students Dorian Barber and Rahul Ramesh for working together with me on this exciting project.
While this marks the end of my second year at Duke, I’m excited to continue exploring this research area.

References

Original Ski Learning Problem Statement: ”Online Algorithms for Rent-or-Buy with Expert Advice”

PAC Learning Models: https://www.cs.utexas.edu/~klivans/f06lec2.pdf

8

